The ongoing exponential growth of traffic moving through the interconnected world drives a continuous upgrade cycle for equipment in the data path and control network. For home and business subscribers, gigabit connectivity per termination is now in reach. This drives the upgrade cycle, which touches all the sub-systems of the network element.
Whether the data path is primarily mobile backhaul, Metro Ethernet, or GPON, it is likely to have somewhere within it, an Ethernet switching component. One of the most common upgrades of this component is the move from 10G to 25/40/100G. This blog post summarizes IP Infusion’s recent experience in creating a network element upgrade.
The upgrade started with the switching silicon. Generally, the change of switching silicon will also trigger software changes. These may include an upgrade of the switch SDK, the control processor hardware, the control plane OS, and whatever version of L2/L3 protocol stacks are running on the hardware. These low level changes can require substantial development resources.
When, for example, Broadcom switching silicon is found in the Ethernet infrastructure, the move to 25/40/100 G will include an upgrade of the Broadcom switch to Trident II, Trident II+, or Tomahawk. This means that a version of the Broadcom SDK that supports one of the latest chips will also be needed – another upgrade. There is typically Layer 2 and Layer 3 control plane software. Examples of this software layer would be Broadcom’s FASTPATH®, Metaswitch’s Network Interconnect, or IP Infusion’s ZebOS®. Most likely this software was dependent on an earlier version of the SDK and will also need to be upgraded.
Since the switch hardware has been changed, the platform vendor may choose a new multi-core processor to improve performance, reduce power, or decrease component cost. Once the control processor is selected, a version of the OS that supports all of the software upgrades listed above will have to be selected. This requires a new board support package (BSP) for that OS and control processor. All of the low level hardware and software needs to be integrated and tested.
Where this upgrade process can get tricky is at the application layer. The application layer will typically have been designed to be largely independent of the bandwidth provided by the underlying hardware. Its user interface and features will be well known to users and operations personnel. It will have been thoroughly tested by QA. In short, it may be a requirement that the upper layers of the application undergo no modification whatsoever. This dictates that an interface between the application layer and the lower layers of the software will have to be developed, isolating the application layers from those changes.
At the end of the upgrade cycle, the users and administrators still have a familiar look and feel to the service. However, the bandwidth has been increased by as much as a factor of 10x. This enables the delivery of more data to more people in a constrained cost and power envelope. Using IP Infusion’s development resources, highly skilled in networking hardware and software, the entire upgrade cycle was accomplished in a timely and cost-effective manner.
IP Infusion Innovations can help you in upgrading your network connected equipment to the latest and greatest Ethernet technologies. Our experience with management plane, control plane, data plane, BSPs, Switching SDKs, and network application development will help ensure the success of your Ethernet upgrade project.